Hyperbolic monopoles, JNR data and spectral curves

نویسندگان

  • Stefano Bolognesi
  • Alex Cockburn
  • Paul Sutcliffe
چکیده

A large class of explicit hyperbolic monopole solutions can be obtained from JNR instanton data, if the curvature of hyperbolic space is suitably tuned. Here we provide explicit formulae for both the monopole spectral curve and its rational map in terms of JNR data. Examples with platonic symmetry are presented, together with some one-parameter families with cyclic and dihedral symmetries. These families include hyperbolic analogues of geodesics that describe symmetric monopole scatterings in Euclidean space and we illustrate the results with energy density isosurfaces. There is a metric on the moduli space of hyperbolic monopoles, defined using the abelian connection on the boundary of hyperbolic space, and we provide a simple integral formula for this metric on the space of JNR data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral curves and the mass of hyperbolic monopoles

The moduli spaces of hyperbolic monopoles are naturally fibred by the monopole mass, and this leads to a nontrivial mass dependence of the holomorphic data (spectral curves, rational maps, holomorphic spheres) associated to hyperbolic multi-monopoles. In this paper, we obtain an explicit description of this dependence for general hyperbolic monopoles of magnetic charge two. In addition, we show...

متن کامل

Spectral curves of non-integral hyperbolic monopoles

In (??), a is an SUn-connection on the trivial bundle over H, Fa is its curvature, iφ (the Higgs field) is a section of the adjoint bundle, and ∗ is the Hodge ∗-operator on H. We regard two monopoles as the same if they are gauge-equivalent. (The reason for our apparently eccentric notation for the Higgs field will become clear in §3.) We shall develop the twistor description of solutions of (?...

متن کامل

On the complete integrability of the discrete Nahm equations

The discrete Nahm equations, a system of matrix valued difference equations, arose in the work of Braam and Austin on half-integral mass hyperbolic monopoles. We show that the discrete Nahm equations are completely integrable in a natural sense: to any solution we can associate a spectral curve and a holomorphic linebundle over the spectral curve, such that the discrete-time DN evolution corres...

متن کامل

Symmetric Monopoles

We discuss the spectral curves and rational maps associated with SU(2) Bogomolny monopoles of arbitrary charge k. We describe the effect on the rational maps of inverting monopoles in the plane with respect to which the rational maps are defined, and discuss the monopoles invariant under such inversion. We define the strongly centred monopoles, and show they form a geodesic submanifold of the k...

متن کامل

Zero and Innnite Curvature Limits of Hyperbolic Monopoles

We show that the zero curvature limit of the space of hyperbolic monopoles gives the Euclidean monopoles, settling a conjecture of Atiyah. We also study the innnite curvature limit of the space of hyperbolic monopoles and show that the associated rational maps appear explicitly here.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015